Self-Lubricity of WSex Nanocomposite Coatings.
نویسندگان
چکیده
Transition metal chalcogenides with lamellar structure are known for their use in tribological applications although limited to vacuum due to their easy degradation in the presence of oxygen and/or moisture. Here we present a tailored WSex coating with low friction (0.07) and low wear rates (3×10(-7) mm3 Nm(-1)) even in ambient air. To understand the low friction behavior and lower chemical reactivity a tribological study is carried out in a high-vacuum tribometer under variable pressure (atmospheric pressure to 1×10(-8) mbar). A detailed investigation of the film nanostructure and composition by advanced transmission electron microscopy techniques with nanoscale resolution determined that the topmost layer is formed by nanocrystals of WSe2 embedded in an amorphous matrix richer in W, a-W(Se). After the friction test, an increased crystalline order and orientation of WSe2 lamellas along the sliding direction were observed in the interfacial region. On the basis of high angle annular dark field, scanning transmission electron microscopy, and energy dispersive X-ray analysis, the release of W atoms from the interstitial basal planes of the a-W(Se) phase is proposed. These W atoms reaching the surface, play a sacrificial role preventing the lubricant WSe2 phase from oxidation. The increase of the WSe2 crystalline order and the buffer effect of W capturing oxygen atoms would explain the enhanced chemical and tribological response of this designed nanocomposite material.
منابع مشابه
Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings
Tribological coatings made of MoS2 and WSe2 phases and their corresponding combinations with tungsten carbide (WC) were prepared by non-reactive magnetron sputtering of individual targets of similar composition. A comparative tribological analysis of these multiphase coatings was done in both ambient air (30-40% relative humidity, RH) and dry nitrogen (RH<7%) environments using the same tribome...
متن کاملNanocomposite of ZrO2/Polymer Thin-Film Coatings by The Ionically Self-Assembled Monolayer Technique
ii Nanocomposite of ZrO2/Polymer Thin-film Coatings by The Ionically Self-Assembled Monolayer Technique
متن کاملThe Effect of Simultaneous Incorporation of PTFE Nanoparticles and Carbon Nanotubes on the Tribological Behavior of Ni-P Coating
In some engineering fields, wear resistance and a low friction coefficient are required at the sametime. In this research, PTFE nanoparticles and carbon nanotubes were co-deposited within Ni-Pmatrix to obtain an Ni-P-PTFE-CNT hybrid coating for wear resistance and a low friction coefficient.The tribological properties of the deposits were evaluated by pin on disc tribometer. T...
متن کاملCorrosion Behaviour of TiN/a-C Superhard Nanocomposite Coatings Prepared by a Reactive DC Magnetron Sputtering Process
Nanocomposite coatings of TiN/a-C were prepared on tool steel substrates using a multitarget reactive DC magnetron sputtering process at various TiN layer thicknesses (0.6–2.8 nm). The a-C layer thickness was approximately 0.45 nm. Structural characterisation of the coatings was done by X-ray diffraction (XRD). Incorporation of an a-C phase in TiN matrix reduced crystallite size of the coatings...
متن کاملPreparation and Characterization of Ni–TiO2 Nanocomposite Coatings Produced by Electrodeposition Technique
In this paper, Ni–TiO2 nanocomposite coatings with different sizes of TiO2 nanoparticles were successfully prepared by electrodeposition process from a nickel electrolyte in which the TiO2 nanoparticles were suspended. The influence of relevant deposition parameters on the nanocomposite coating characteristics was discussed. X-ray diffractometer has been applied in order to investigate the phas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 7 15 شماره
صفحات -
تاریخ انتشار 2015